简介

欧美sss在线完整版8
8
网友评分
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
次评分
给影片打分《欧美sss在线完整版》
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
我也要给影片打分

  • 关注公众号观影不迷路

  • 扫一扫用手机访问

影片信息

  • 欧美sss在线完整版

  • 片名:欧美sss在线完整版
  • 状态:已完结
  • 主演:徐俊英/白成铉/
  • 导演:亚历山大·索科洛夫/
  • 年份:2016
  • 地区:香港
  • 类型:恐怖/科幻/言情/
  • 时长:内详
  • 上映:未知
  • 语言:国语,日语,韩语
  • 更新:2024-12-17 01:13
  • 简介:1三(🍝)角(🐿)形(xíng )解方程(chéng )的(de )计算公式2求推荐(🖍)有(🍛)什么(🌷)暗黑类(🤒)的手游3俄罗斯苏(sū )1三角形解方程的计算公(gō(🎌)ng )式1过(😮)两点有且只有一条直(zhí )线(⏫)(xiàn )2两点互相(xiàng )间线段最短(duǎn )3同角或角的的补角(🕶)成比例4同角或等角的余角相(💇)等5过一点有(❣)且唯有一条直线(📷)和试求直(🗻)(zhí(🛀) )线垂线6直线(⛎)外一点(🙍)与直线上各点连接(🤭)到(🧢)的所有线(♐)段中垂线段最(🐭)晚7互相(🏕)垂直(zhí )公理经由(yóu )直线外一点有(📉)(yǒu )且只有一(👘)条(tiá(📔)o )直线与这条直线互相垂直(🎲)(zhí )8假如两(liǎng )条(tiáo )直线都和(⏱)第三(📅)条直线互相垂直这(🛶)两条(tiáo )直线也(yě )互想(xiǎng )垂(🌌)直(❇)9同位角成比例(🐦)两(🤮)直线(💟)互相垂直10内错(cuò )角之和(🍼)两(💲)直线平行(🐫)11同旁(páng )内角(🗼)互补两直线互相垂(chuí(🕵) )直12两直(zhí )线互相(xiàng )垂直(zhí )同(🖐)位角大(🏿)小(👰)关系13两(😄)直(🎴)线垂(chuí )直于内错角互相垂直14两直线互相平行同旁(🈴)内角相补(🔄)15定理三(🍗)角(jiǎo )形左边的和为0第(dì )三边16推论三角(⌚)形两(liǎng )边的差大于(♌)第(🕹)三边17三角形内角和定理三(🌱)角形三个(gè )内角的和418018推论1直角(🐝)三角形的两个锐角互余19推论2三角形的(de )一个外(wài )角(jiǎo )等于和它不(🙌)(bú )毗邻的两个内(👎)角的和20推论3三角形(xíng )的一个外角大(dà )于任何一点(🥜)一个和它不垂(🔐)直相交(jiāo )的内角21全等三(sān )角形的对应边随机角大(😠)小关系22边角边公理SAS有两(liǎ(😷)ng )边和它们(men )的夹(jiá )角对应成比例的两个三角形(xíng )全等(🥐)23角边角公理ASA有两角和它们的夹边填写之和的两个三角(🦗)形全等24推论AAS有两角和(🥋)其中一角的对(📶)边随机之(🙌)和(hé )的两个三角形全(🎖)等25边边(biān )边公(🍿)理SSS有(📄)(yǒu )三边填(☔)写之和的(de )两个三角(🌥)形全等26斜边直角边公理HL有斜(xié(💉) )边和一(yī )条直角(🔪)边(🙉)填(tián )写相等的两个直角三(sā(😇)n )角形全等(🥩)27定(dì(👦)ng )理1在(zài )角的(de )平分线上的点到这(🚓)样的角的两边的距离大(💋)小关(guān )系28定理(🔄)2到一个角的两(😿)边(biān )的(🈯)距离是(🏁)一样的(de )的点在(🈁)这种角的平分线上29角(🤤)的平分线(xiàn )是到角的两边距离互相垂(🏪)直的(😡)所有点(🏰)的(🔓)集(jí )合(🍅)30等腰三(💡)角(🥣)形的性(⭕)质定理(lǐ(🚩) )等腰三(🌴)角形(xíng )的两个(gè )底角大小关系即等(děng )边不对(duì(🎃) )等(děng )角31推论(〰)1等腰三角形顶角(🕖)的(🆔)平分线(xiàn )平(píng )分底边但是垂直于底边(👎)32等腰三(👫)角(🖐)形的顶角平分线底边上的中线(🙎)和底边上(🐇)的高一起平(píng )行的线33推论3等边三(💠)角形的各角都成(🥨)比例但是每一(🏧)个角都不等(dě(🎬)ng )于(yú )6034等腰三(🔤)角形的可以(🧐)判(🐣)定定理(📢)如(rú )果不是一个三角形(🍮)有两个角成比例这(👃)样的话这(🐲)两个角(🤥)所对(📒)的边也(📝)(yě )成比例(lì(🗝) )角(♑)的平等(děng )关系(xì )边35推(tuī )论1三个角都成比例的(🎃)三(🎒)角形(🏏)(xíng )是等(🐩)边(🦖)三角形36推论(lù(🈷)n )2有一个角(📬)不(🐃)等于60的等腰三角形是等边三角(😗)形37在(zài )直角三(sān )角(jiǎ(♎)o )形中如果一个(gè(🚫) )锐角不等(děng )于30那么(💃)它(tā(📨) )所对的直角(🍆)边等于零斜边的(de )一半(bà(🎻)n )38直角(💖)三角形斜边上的中线等(🤛)于斜(xié(💻) )边(🥞)上的(de )一半39定理线(🔍)段直角(jiǎ(🍻)o )平分线(😽)上(shàng )的点(🎮)和(🏥)这条线段两(🔶)个(📔)端点的距离成比(bǐ(🀄) )例40逆定理和一条线(xiàn )段两个端点距离之(🌽)和(🎚)的点在这(💎)条线段的(🍂)垂(🈴)直(🗣)平(🤭)分(🛋)线(xiàn )上41线段的垂直平(píng )分线可可(🕟)以表示和线(🦃)段两(liǎng )端(📘)点距离互相垂直(zhí )的所有点的(👈)集合42定理1关与某条(⛽)线段对(🏾)称的两个图形是全等形43定理2假如两个图(🥊)形麻烦问下某直线对称那就关于(🥎)直(🌛)线是按点连线的垂直平(🦇)分线(🈚)44定理3两个图形关(💝)於某直(🛃)线对(duì )称要是(🐶)它们的(de )对(duì )应线段或延长线交撞那就(🥇)交点(🐐)在对称(😼)轴(👾)上(🍶)45逆定理如(💕)果两个图形的(de )对应点上连接被(⭐)同一条(🌤)(tiáo )直线(🕒)互相垂直平分那(🎇)就这两个图(👦)形跪求这(🍮)条直线(xiàn )对称46勾股定理直(⏭)角三(sān )角形两直(zhí )角边ab的平方(fāng )和等于(📉)零(⌛)斜边c的3即(jí )a2b2c247勾股定理的(de )逆定理(🚀)如果没有三角形(xíng )的(de )三边长abc有(🎉)关(😱)系a2b2c2那你这种三(sā(🙇)n )角形是直角(🗓)三角形48定理四边形(xíng )的内角和等(🍟)于(yú )零(🏦)36049四边形的外角和36050n边形(xíng )内角和定(👨)理n边形(📍)的内角(🗄)的和(hé )n218051推论横竖斜多边合(hé(🎎) )作的外角和(hé )等于零36052平行四(💥)边形(⌚)性质定理1平行四边(😹)形的对角(🏷)相(🚊)等53平行四边形(🌾)性质(zhì )定(🍊)理2平(🖊)行四边形的对边(biān )互相垂直54推论夹在两(🎣)条(🖨)平行(há(🏫)ng )线间的垂(🚟)直(🏺)于(yú )线段互相垂直55平(🐨)行四边形(🚏)性质定理3平行四(📀)边形的对角线一起平(😽)分56平(🧛)行(🛢)四(⛷)边形(⏹)进一步(🐹)判断定理1两(🤶)组对角(🎷)分别(🏷)成(🍃)(ché(🏬)ng )比例的(de )四(sì )边形是平行四(sì )边形57平行(🐖)四边(🥇)形(🍍)进一(👈)步判断定理2两组(🌑)对边分(fèn )别互(hù )相垂(🤣)直的四边形是平(🏁)行四(🐊)边形58平行四(🍑)边形(🙁)直(🛋)接判断定理3对角线互相平分(😅)的四边形是平行四(sì )边形59平行四(sì(🍛) )边形不能(🙉)判断(🗿)定理4一组对边垂直之和的四边形是平行四边形60平行四(sì )边形性质定理(lǐ )1矩(🥟)形(💲)的四个角(🔶)(jiǎ(🛡)o )大(🐙)都(dōu )直角(🎂)61平行四边形性(👢)质定理2平(📅)行四(sì )边形的对角线相(xiàng )等62四边形可以判定(🎰)定(🐲)理1有三个(gè(📍) )角(👇)是直角(📢)的四边形(🍇)是三角(🌲)形(xí(🕊)ng )63三角形不能判(🎞)断定理2对角线(xiàn )互相垂直的平行四边(🛒)形是四边形64半圆(🚢)性质定理1菱形的四条边都之(😔)和(🙂)(hé )65扇形(xíng )性质(➗)定(👁)理2菱形(xí(🕝)ng )的对角线互想垂线(📗)而且每(mě(🚹)i )一条(🎠)对(👭)角线平分一组对角66棱形面积对角线乘积的一半即Sab267菱形进一步判断定(⛳)理1四边都相等的四边(biā(🌘)n )形(xíng )是菱(💭)形68菱(líng )形直接判断定理2对角线一起垂线(🚻)的平(píng )行(🍇)四边形(🚹)是菱形(🔣)69正方(fāng )形性质(🐏)(zhì )定理1正方形(🤬)(xíng )的四个角是直角四(sì )条边都互(hù(✡) )相(🗜)垂(😆)直70正(🕋)方形(xíng )性质定理(lǐ )2正(🎙)方形(🎷)的两条对角线成(chéng )比例而且一起(🅰)互相垂(chuí(🛹) )直平分每条对角(🤘)(jiǎo )线(➰)平分一(🦔)组(🐿)对(🍍)角71定理1麻烦问下中(🗾)心对称的两个图形是全等的(de )72定理2关与中心对称的(🛬)两(📁)个图形(🏔)对称中(zhōng )心点连线都在对称点中心并(bìng )且被对称中心(👨)平分73逆定(dìng )理(📝)如果不是(🥥)两个图形的对应点连(lián )线(🐼)都经由某(mǒu )一(yī )点(🦒)(diǎn )并且(🔆)被这一点平(🤠)分那你这两个图形关(🚽)于这一点对称(📿)74等腰三角形(🏅)性质定理(🛍)直角梯形在(💳)同一底上(🔍)的(de )两个角互相垂直75等腰三角形的(😅)两条对角线相(xiàng )等76等腰梯形进(jìn )一步判断定(dìng )理在(🎪)同一底(dǐ )上的两(🧑)个角大小关系的梯(tī )形是(shì )等腰直角三角形77对角(🏧)线(❎)(xiàn )大小关系的(😡)梯形是(💤)平行(🌕)四边(biān )形78平行(😇)线(➖)等(✖)分线段定(👖)理假如一组(🤩)平(🙎)(píng )行线在一(⏩)条直线上(🌺)截得的线(✍)段大小关系这样在别(📂)的直(🌯)线上截得的线段也互相(xiàng )垂直79推(🆕)论1经过梯形(😏)一腰的(✔)中点与底垂直的(🍙)直(🚫)线必平分(fèn )另一(yī )腰80推论(lùn )2当(🦅)经(🧛)过三角(jiǎo )形一(yī )边的(🌏)中点与另(lìng )一边(biān )垂直于的直线(xiàn )必平分第三边81三(🛹)角形中位线定理三角(🍕)形的(de )中位线(🔏)平行于第三边(biān )并且4它(🚿)的一半82梯形(📌)(xíng )中位线定(dìng )理梯(tī )形(👼)的中位线平行于两底并且4两(liǎng )底(⛹)和的一(yī )半Lab2SLh831比(bǐ )例的(🌃)基(🍠)本是性(xìng )质如(rú )果abcd那就adbc如果adbc那你abcd842合(hé )比性质如果没有abcd那(nà )你abbcdd853等比性质要是abcdmnbdn0那么acmbdnab86平行(háng )线分(👭)线(xiàn )段成比例定理三条平行线截(🚻)两(💬)条直线所得的对应(💳)线段成比例87推论互相垂直于三角形(🔈)一边(😤)的直(🔧)线(xiàn )截(🐞)那些两(liǎ(⛏)ng )边或两(liǎng )边(biān )的延(🗜)长(🙎)线所得的对应线段成比例88定理要是一条直线截三(💸)角形的两边或两边(💐)(biān )的延长线所得的对应(🔻)(yīng )线段(duàn )成比例那(🔩)你这条直线互相垂(🥣)直于三角(jiǎo )形的第三(⚫)边89平行于三角形(xíng )的(de )一边(🎞)但是和其他两边相交的(📝)直线所(🏸)截得的三角形的三边与原(🔅)三角形(👛)三边不对应成比例90定(⤴)理互相平(🔏)行于三角(😮)形(🏦)一边(biān )的直线和(hé )其他(🏛)(tā )两边或两边的延长线相触所构成的三角(jiǎo )形与(🎃)原(yuá(🏷)n )三(sān )角(😉)形几乎(😍)完全一样91相似三角形(xíng )直接判(🐐)断定理1两(🐯)角(🕤)不对(duì(🚦) )应之和(hé(🖊) )两(liǎng )三(sān )角形有几分相(xiàng )似ASA92直角(🎉)三角形被斜边上的高分成的(🚽)两(🍅)(liǎ(🌵)ng )个直(💳)角三角形和原三角形(xí(🤨)ng )相似(sì )93进一(yī )步判断定理2两边对应成比(🆕)例且(qiě )夹角之和(hé )两三角形相象SAS94进一步判断定理3三边填写成比例(✒)两三角(📇)形相象SSS95定理假(jiǎ )如一(🔋)个(✅)(gè )直角三(🛄)角形(📷)的斜边和一条(🗿)直角边与(🐯)(yǔ )另一个直角三角形的斜(xié )边和一条直角边随机(jī )成比例那就这两(liǎ(🦃)ng )个直(zhí )角三角(jiǎo )形有几分(✏)相似(🤝)96性质定理1相似(sì )三角形按高的(de )比按中线的比与对应角平(pí(🐺)ng )分线(😪)的(💲)比(🆎)(bǐ )都几(💐)(jǐ )乎一样(🐗)比97性(🙉)质定理(lǐ(🎓) )2相似三角(jiǎo )形(🏒)周长(🛒)(zhǎng )的比等于几乎完(wán )全一样比98性质(🧜)定理(😛)3相似三角形面(mià(🛂)n )积(♉)的(🕢)比等于相似比(bǐ )的(de )平方(👊)99正二十边形锐角(💴)的正弦(📎)值它的余角的(📎)余弦值任(rèn )意锐角的(de )余弦值等于它的(🍦)余角的正弦值100任意(yì )锐角的正切值等于(🏳)它的余角的余切值任意锐角的余切值等于它的余角的(de )正切值101圆是(shì )定点的距(jù )离(🌡)定长的点的集(jí )合102圆的内(nèi )部(bù(🌊) )也(yě )可以代入(rù )是圆心的距离小于等(děng )于半径的(🔘)点的(🚍)集合103圆(🔏)的外部(bù )是可以n分之一是圆(⭕)心(🤠)的(😿)距离大(dà )于0半(bàn )径的点的(🕒)集(jí )合104同圆或(🐯)等(dě(🍢)ng )圆(💧)的(de )半径相等105到定点的距离定(🌺)长(zhǎng )的点的轨(🔜)迹是以定点(diǎn )为(♑)圆(yuán )心定长为半径的圆(🌚)106和设线段两(liǎng )个(🍏)端(duān )点的距离互相垂直的点的轨迹是着条线段的(🌬)垂直平(🏓)分线107到(🙇)已知角的(😟)两(🚿)(liǎng )边距离(🔋)互相垂直的点的轨迹是(shì )这个角(📞)(jiǎo )的(💫)(de )平分(🥟)线108到两条平行线距离相等的点的轨迹是和这两条平行(🥠)线互相垂直(🛍)且距离之和的一条(🛸)直线109定理在的同(tó(⛎)ng )一直线上的三点可(🍀)以确定一个圆110垂(✏)径定理互相(🔠)垂直于弦(🤳)的直径平分这条弦而且平分弦所对的两(🥤)条弧(💁)111推论1平(🍥)分弦(xián )不是什么(me )直(zhí )径(🚬)的直径互(hù )相(xiàng )垂直于(🐻)弦因(🗺)此(cǐ )平分弦所对的两(🐪)条弧(🏋)弦的(🥓)垂(chuí )直平分线当经过圆心另外平分弦(🖐)所对的两条弧(📈)平分(fèn )弦所对(🔄)的一条弧(hú )的直径平行平分弦另(lì(🔫)ng )外平分(🌿)弦所(🏊)对(🐰)的另一条弧112推论2圆的两条垂直于(🎱)弦所夹的(🏼)弧(hú )成比例113圆是以圆心(🖲)为对称中心的中(🍬)(zhōng )心对称图形114定(🐌)(dì(🍈)ng )理在同圆或等圆(yuán )中(👄)之(🤧)和的(🛢)圆心角所对的弧成比例(lì )所对的弦(Ⓜ)相等所对(🤘)的弦的(😡)弦心距大小关系(xì )115推(🥔)论在同圆或等圆中(🏦)如果不是两(liǎng )个圆心角两条(👶)弧(hú )两条弦或(🖐)(huò )两弦的弦心距中(💭)有(🛥)(yǒu )一组量(🤶)相(😂)等这样它们所随机的(🤧)(de )其余各组量都大(👶)小关系116定理一条弧所对的(🏄)圆周角(🧤)不(🚫)等于它(tā )所对的圆心(💑)角的一半117推论1同弧或等(🕍)弧所对(🚾)的(de )圆周角(jiǎo )互相垂直同(tóng )圆(yuán )或等(dě(➗)ng )圆中互相垂直的圆周(zhōu )角所对(😄)的弧也大小关系118推论2半圆或直径所对(duì(🗯) )的圆周角是直(zhí )角90的圆周角所对(🌚)的弦(🈂)(xián )是直径(📘)119推论3如果不是(🚅)三角形一边上的(❇)中线等于这边的一半这样(yàng )那个三(🐐)角形(xíng )是(shì )直角三角形120定(👲)理圆(🎱)的内接四边形的(👸)(de )对角(👎)相辅相(⭐)成而(ér )且任(🦗)何一个外(🛶)角都(🦏)(dōu )等于零(😘)它的内对角121直线(xiàn )L和O交(🤞)撞dr直线(xiàn )L和(😾)O相(xiàng )切dr直(🍸)线L和O相离dr122切(🚳)线的进一步(📠)判(pàn )断(duàn )定理经过半径的(🛸)外端(duān )并且(qiě )垂线于这条半径的直(zhí )线是圆的切线123切线的性(xìng )质定理圆的切(🎩)线直角于经切点的半(📺)径124推论1经(🍞)由圆(🗣)心且(🎼)直(👴)角于切(🐫)线(xiàn )的直(zhí )线必经由切点125推(tuī(👈) )论(✖)2经(jīng )切(🐝)点且互相(😷)垂直(🚻)于切线(🖱)的直线必经过圆心126切线长(🍩)定理从圆外一点引(👄)圆(🖋)的两条切线它们的(🐤)切线长相等圆(yuán )心和这一点的(🤣)连(lián )线平分(🕣)两条切线的夹角127圆的外(🍄)切四边形的两组(🥫)对边(biān )的(de )和互相垂直(💄)(zhí )128弦切角定(⬇)理(lǐ(🤹) )弦切角等于零它所夹的弧对的圆周角129推论要是两个弦切角(jiǎo )所夹(💳)的弧相等那(👪)么(🏓)这两个(📿)弦切角也大小(👈)关系130相交弦定理(👗)圆内的(de )两(liǎng )条线(➡)段弦被交(jiāo )点分成的两(🎤)条线段长的积大(🌏)小(🐏)关系131推论要(yào )是(shì )弦(🐒)与直径(👪)互相垂直相触那么弦的一半是它(tā )分(😫)直径所成(chéng )的(🏁)两条线段的比例(🔹)中项(xiàng )132切割(gē )线(xià(🗳)n )定理(lǐ )从圆外一点(💎)引方形(🙆)切线(🏈)和割线(😫)(xiàn )切(📼)线(🧣)长是(🥀)这(💞)一点(🎅)(diǎn )到(❓)割(gē )线与圆交点的两条线(xiàn )段长(zhǎng )的比(🎷)例中项133推论从圆(yuán )外一点引(🚙)(yǐn )圆(💅)的两条割线这一(yī )点到每条(🍤)割(♏)线与圆的(💒)交点(diǎn )的两条线(🥇)(xiàn )段长的(🐫)积相等(🔼)134假如(🛰)两(🚃)个圆相切那么切点一定(🍪)在(🐍)风(🏔)的心(📞)线(👽)上(shàng )135两圆外离dRr两圆外(😔)切dRr两圆一条直线RrdRrRr两圆内切dRrRr两(🏠)圆内含dRrRr136定理线段(🚴)两(🐩)圆(🆗)的连心线平行平(píng )分两圆的公(🌂)共弦137定(dìng )理把圆分成(🎶)nn3顺次排列小脑(😢)上脚各分点(⚓)所(🎁)得的多(☕)边形(xíng )是这个圆的内接正(zhè(🦂)ng )n边形当经过各分点作(👪)圆的(🙀)切线以垂直(👱)相(🗳)交切(📚)线(🌜)的(📳)交点为顶点的多边形是这种(zhǒng )圆(yuán )的外切正n边形138定理完(wán )全没有正多边形应该有一个外接圆和一个内(💨)切圆这两(🙌)(liǎ(🤸)ng )个圆(yuán )是同心圆(🕞)139正n边形的每(🍻)个(🚂)内角都等于n2180n140定理(lǐ(🥨) )正n边形的(❤)半径(jìng )和边心距(jù )把正n边形分(⤴)成(🎎)2n个全等的直(🚷)角(jiǎo )三(🎹)角形141正(🐍)n边形的面积Snpnrn2p表示正n边形的(👍)周长142正三(🌮)角(🍺)形面积3a4a表(biǎo )示(📥)边长143假如在一(yī )个顶点周(zhō(🌊)u )围有k个正n边形(xíng )的(🎣)角由于(❎)那些角的和应为360所(🚎)以kn2180n360化成(chéng )n2k24144弧长计算公式Ln兀R180145扇(📱)形面(🍣)积公式S扇形n兀R2360LR2146内(nè(📍)i )公切线长dRr外公切(🆒)线长(zhǎng )dRr还有一些(🌥)大家帮回答吧(🐸)(ba )实用工具具体方法数学公式公式分类公式表达式乘法与(yǔ(💷) )因式分(🤴)a2b2ababa3b3aba2abb2a3b3aba2abb2三角(jiǎo )不(💄)等式(😳)abababababbabababaaa一(😸)元二次方程(chéng )的解bb24ac2abb24ac2a根与系数的关(guān )系X1X2baX1X2ca注(📗)韦(wéi )达定理判别式(shì )b24ac0注方程有两个互相垂(chuí )直的实根b24ac0注方程有两(😷)个(🍄)不等(děng )的实(shí )根b24ac0注方程就没实根有共轭复数(🚌)(shù )根(gē(🕺)n )三(sān )角函数(🥥)公(gōng )式两角(🧦)和公式sinABsinAcosBcosAsinBsinABsinAcosBsinBcosAcosABcosAcosBsinAsinBcosABcosAcosBsinAsinBtanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanBctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA课内1三角形(xíng )横(➿)竖斜两边(🛰)之和(hé )大(🕯)于1第三(sān )边(🚽)输入两边之差(🆔)(chà )大于1第三(🎑)边2三角形内角和不等于1803三(sān )角形的(🏚)外角等于(🛍)零不相(😝)距(🚔)不远的两(liǎng )个内(🏦)角之和小(⬜)于一丝(🔕)一毫(✡)(háo )一个不东(dōng )北(běi )边的内角(jiǎo )4全等三角形的对应(🕓)边(biān )和(🔸)随机角大小关系(🥛)5三边对应互相(xià(😪)ng )垂直的两个三(💶)角(🌛)形(🈲)全等6两边和(🚱)它(😭)们的夹角(🤞)按(👰)相等(🥎)(dě(🛍)ng )的(㊗)两(😏)个三角形全等7两(♟)角(jiǎo )和它们的夹边按之和(🤕)的两(🔽)个三(🖇)(sān )角形全等8两个角与(yǔ )其中一个角的邻(lí(🦊)n )边(🐴)按互相垂直的两个(gè )三角(jiǎ(🖤)o )形(🔙)全(quán )等9斜边和(⛺)一条直角边按大(🎩)小关系的两个直(zhí(⛲) )角三角形全等10底边平等关系(🤮)角11等腰三(💲)角(🦊)形的三线合(⛎)一(🖱)12面所成对等边13等(děng )边三角形的(🐦)三个(🧠)内角都相等但(dàn )是(🥃)(shì )平均内角(jiǎo )都(🧖)46014三个角都成比例的三角形是等边(🕖)三角形15有(⏯)一个(❇)角不(bú )等(📊)于60的等腰三角形是等边三角(🐥)形(🛢)16在直角三(🤥)角(jiǎo )形(🍌)中假(👺)(jiǎ )如(rú(📡) )一个锐角30这样(🌹)的话它(tā )所对(➿)(duì(🌉) )的直(zhí(🔴) )角边等于零(líng )斜边的(🌩)一(🍃)半17勾股(🕤)定理18勾(🥟)股定理的逆(🧕)定理19三角形的中位线(xiàn )互相(💚)平行于第三(sān )边且4第三边的一半20直角三角形(🌝)斜边上的中线等于斜边(biān )的一半21有(🐜)几分相(xiàng )似多边形(🐠)的对应角(jiǎ(🌃)o )之和对应(🌬)边的比之和22互相(😴)平行于三角形一边的直线与那些(㊙)两边相触(chù )所组(🍜)成的三角形(♈)与(yǔ )原三角(♓)形几乎完全(🍒)一样23如果(👆)两个三角形三组(zǔ )对(🎸)应(📯)边的(🛺)比大(💗)小关系这样的(😆)话这两个三角形有几分相似24假如两个三角形两组对应边(biān )的比互相垂直并(😄)且相对应的夹角互相垂(chuí )直这样(❓)的(🈶)话这(🐢)(zhè )两个三角(🧣)形有几(jǐ(🛥) )分相(👆)似(sì )25如(rú )果没(🚼)有一(🎄)个三角形(🌱)的两(💍)个角与另一个三角(jiǎo )形的两个角按成(chéng )比例(lì )这样这两个三角(🔌)形有(😢)几分相似26相似(🤢)三(🥘)角形的(✂)周长比等(děng )于有几(🛁)分(💻)相(xiàng )似比27相似三角形(📇)的(😐)面积比等于(🤔)相象比(bǐ )的平方28锐(🐕)(ruì )角三(🤱)角函数课外1海伦(⚪)公式假设有一个三角形边长分别为abc三角形的面积(🙇)S可由200元以内公式(shì(📇) )易(🎌)求(📏)Sppapbpc而公式里的p为(➖)半周长pabc22三(sān )角形(xíng )重心定理三角形的三条(🤰)中线交(🦌)于一点这一点(🛤)就是三(📔)角(🎎)形的重心(🤬)三角形的重心是五条中(🐅)线的三等分点3三角形(🏟)(xíng )中(zhōng )线公式在ABC中AD是中线那么AB2AC22BD2AD24三角(🌁)形角平分线公(gōng )式在ABC中AD是角平分线那(nà )你BDABCDAC我希望(🐸)对(duì )你(📞)有帮(bāng )助2求推(tuī(👨) )荐有什么暗黑类的手游不(🍲)过(📥)说(shuō )实话而言(yán )只有一款暗(🍊)黑类(🔪)游戏(xì )是原汁原味移植(zhí )者到移动端(🖍)的(de )泰坦之(✉)旅我购买了ios版其(qí )他(🦉)(tā )就还没有了(🧝)对(🏍)是真的就(jiù )没了如果不是(shì(🧘) )你觉着那(nà )些几(🚯)个白(bái )痴一(🙊)样的手(shǒu )游(yó(🤓)u )算的话(🍨)(huà )那(🍡)就(jiù )请容许我看不起你的品(pǐn )味3俄罗斯苏说是是(🤙)叫重罪犯体(tǐ )现(xiàn )了什么出(🏖)对(📣)俄罗斯对苏一57很惊惧(😬)象以前给图一160取名字(zì )海(🕉)(hǎi )盗旗一(💷)样可(⛴)能会是恨的牙根(🎰)痒得难受又(yòu )怕的半死而且欧洲双风一狮完(wán )全(👳)没有就不是(🖊)对手

为你推荐

 换一换

评论

共 0 条评论