简介

欧美sss在线完整版7
7
网友评分
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
次评分
给影片打分《欧美sss在线完整版》
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
我也要给影片打分

  • 关注公众号观影不迷路

  • 扫一扫用手机访问

影片信息

  • 欧美sss在线完整版

  • 片名:欧美sss在线完整版
  • 状态:已完结
  • 主演:徐宝麟/范爱洁/何民居/曲惠德/张琼/
  • 导演:Delicious/Tutor/
  • 年份:2018
  • 地区:印度
  • 类型:言情/悬疑/古装/
  • 时长:内详
  • 上映:未知
  • 语言:印度语,日语,英语
  • 更新:2024-12-25 11:06
  • 简介:1三角形解方程的计算公式2求推(🀄)荐有(🈹)什么暗(àn )黑类的手(💎)游3俄罗斯苏1三角形(xíng )解方程(🌑)的(❣)计算公式1过(guò(🚼) )两点有且只有一条直线2两(💓)(liǎng )点互(hù )相间(🥔)线段最短(duǎn )3同角或角(👎)的(🎶)的补角成比例(🐏)4同角或等角的余角相等5过一点有且唯(👼)有一条(tiáo )直(🥥)线(xiàn )和试求(qiú )直线垂线6直线(🏹)外(wài )一(yī )点与(🚍)直线上各点连接到的所有线(🚌)段中垂线(xiàn )段最晚(wǎn )7互相垂(chuí )直公理(🙋)经由(yóu )直线外一点(🎂)有且只有一条直(🥧)线(xiàn )与这(📧)条直线互相垂(📍)直8假如两条(tiá(💲)o )直线都和第三条直线互相垂直这两条直线(xiàn )也互想(xiǎng )垂直(🥈)9同位(wèi )角成(💄)比(🌧)例(🥛)两直线互相(xiàng )垂直10内错角之和两直(zhí )线平行11同旁内角(👌)互补两直(🍜)线互相(🐌)垂直12两直线互(🎽)相垂(chuí )直同(🗳)位角大小关系(👫)13两直线垂(🐀)直于内错(cuò )角互相(xiàng )垂直14两直线(🐺)互相(xiàng )平行(😼)同旁内(nè(🆒)i )角相补15定理(🕠)三角形左边的和(hé )为0第三边16推论三角形两边的(🥙)(de )差大(🎳)于(yú(😛) )第(🍃)三边17三角形内角和定理(lǐ )三(🧀)角形三个内(nè(💿)i )角的和418018推论1直角三角形的两个锐角互余(🥀)19推论2三角形(🤞)的一个外角等于(🚑)和它不(🍧)毗(🏽)邻的两个内(nèi )角(🔄)的(de )和20推论(lùn )3三角形(🚓)的一个外角(jiǎo )大(dà )于任何一点一(yī )个和它不(🍺)垂(🚽)直相交(💑)的(🚻)内角21全(🚠)等三角(jiǎo )形的(🐌)对(duì )应边(🚔)随机(📫)角(🥍)大小关系22边角边公理SAS有两边和它们(men )的夹角对应(yī(💵)ng )成比例的(🚲)两个三(sān )角形全等23角边角公理ASA有两角和它们的(🎡)夹边填写之和的两个三(🛂)角(🏠)形(🍚)全等24推论AAS有(📨)两角和其中一角的(de )对边随机之和的(❎)两个(gè )三(sān )角形全等25边(biā(🍧)n )边边公理SSS有三(sān )边(biān )填写之(zhī )和的两个三(🕸)角(📦)形全等26斜(🏪)边直(🤑)角边公(gōng )理HL有斜(xié(👿) )边和一条(tiáo )直角边填写(xiě(💁) )相等(děng )的两(🈯)个直角(jiǎo )三(🖼)角形全等27定理1在角的平(píng )分线(🖕)上的点到这样(yà(🐼)ng )的角(🥠)的两边的(👳)(de )距离大(🎐)小关系28定理2到(dào )一个角的(de )两边的距离是一样的的点在(🕡)(zài )这种(😆)角的(😝)平分线(🛏)(xiàn )上29角的(de )平分(🌭)线(xiàn )是(🐾)到(🐂)角的两(liǎng )边距(💩)离互相垂直的所有点的(🕵)集合30等腰三角形的性质定理等腰(yāo )三角形的(🚪)两个底(dǐ )角(🔥)大小关系即等边不对等角31推论1等腰三角形顶角的(👥)平分线平分底边但是垂直于(yú )底边32等腰三角形的(☔)顶角(jiǎo )平分(fè(🍋)n )线底边上的中线(🍚)和底边上(🎶)的高一起平行(háng )的(😨)线33推论3等边(biān )三角形(🖼)的各角都成比例(🆑)但是每一(🌅)个(📨)角都(😥)不等(🏅)于6034等腰三角(🤩)形的可以判定定理(lǐ )如果不是一个三(sā(🍇)n )角形(❄)有两个(🕟)角成比(🍃)例这样的话这两(liǎng )个(gè )角所对的边也(🛑)成比(🥨)(bǐ )例角的(🗓)平等(🏞)关(🏄)系边35推论1三个角都(🦒)成比例的(de )三角形(xíng )是等(🚌)边三角形36推论2有(😆)一个角不等于(🔻)60的等腰三角形是等(🥞)边三角(jiǎo )形37在直角三角(🛃)形(🐠)中如果一(yī )个锐角不等于(🔭)30那么它所对的直角边等于零(✖)斜边的一半38直角(jiǎo )三角形斜边(🍷)(biā(🌝)n )上的中线等于斜边上(🙈)的(🛳)一半(bàn )39定理线(😼)(xiàn )段(duàn )直角平分线(xiàn )上(shàng )的点和这条线段两个端点(diǎ(🎵)n )的距(jù )离成比例40逆定理和一条(tiáo )线段两个端点距离(🔺)之和的点在这条线(🔊)段(duà(🌬)n )的垂(😇)直平分线(🎢)上(shàng )41线段的垂直(zhí )平(🚞)分线可可以(📔)表(🎴)示(shì(🀄) )和(hé )线段两端(🏮)点距离互相垂直的(de )所有点的(de )集合42定(dìng )理1关与某条线(🛁)段对称的两个图形是全等形43定理(lǐ )2假(jiǎ(🕍) )如两个图形麻烦(🔺)(fá(📌)n )问下某直线对称那就关(⛳)于直线(🚪)是按点连线的垂直平(🈂)分线(xiàn )44定理3两个(🔼)图形关(🔯)於某直线对称要(🥁)是它们(🕑)的(🚋)对应线(🚘)段或延长线交撞那就(🐨)交(jiāo )点在对称轴(zhóu )上45逆(🤺)定理如(rú )果两个图形的对应点上连(🤺)(lián )接被同一(⛱)条直线互(⛱)相垂(chuí )直平分那就(🙎)这两个(🤫)图形(⏹)跪(🤟)求这条直线对称46勾股定理直角(📨)三角(💽)形两(liǎng )直(🥘)角边ab的平方(🤥)和等于零斜边c的3即a2b2c247勾股(🚲)定理的逆定理如(rú )果没(🦑)有三角(🚪)形的三边长abc有关系a2b2c2那(⛴)你(🔔)这种三(🌔)角形是直角三(sān )角形48定(💞)理四边(📕)形的内角和(hé(🦗) )等于零(🤙)36049四边形(👪)的外角和36050n边形内角(🅿)和定理n边形(🙄)的(👟)内角的和n218051推论横竖斜多(♉)边合作(🛹)的(✨)外角和(🗼)等于零(líng )36052平行(😟)四(👡)边形性质定理(💣)1平行四(🗄)边形的对角相等53平行四(🚀)(sì )边形性(xìng )质定理2平(🔱)行四边(biān )形的对边(🗾)互(hù )相垂直54推论夹(🐲)(jiá )在两条平行线间(🖖)的垂(⏩)直于线段互(🏃)相(⏺)垂直(🐞)55平行(há(🍚)ng )四(sì )边(🤺)(biān )形性质定理3平行四边形(🏁)的对(🖋)角线一起平分56平行四边(📨)形进一步(😲)判断定理(🛄)1两组(🏕)对角分别成(🥢)比例的四边形是平行四边形57平(🏿)行四边形进一步(🔏)判断(👈)定理2两组对(duì )边分(💨)别(🌔)互相垂直的四边形是(👂)平(píng )行四边形58平(píng )行四边形直接判断定理3对(duì )角线互相平(🖌)(píng )分的四边形是平行四(🍗)边形59平(píng )行四边(🥋)形不能判断(🔌)定理4一(🛑)组对边垂直之和的四边形(💪)是平行四边形60平(🌒)行四边形(🖌)性(xìng )质定(😠)理(🚳)1矩形的四个角大都(👸)直角61平行(🥈)四(🔳)边(💳)形性(🔦)(xìng )质定理2平行四边形的对角线(🎑)相等62四边形可以判定(👝)定理(lǐ )1有三(sān )个角是(shì )直角的四边形是(🏛)三角形63三(😗)角(🗣)形不能判(✒)断定理2对(duì(⏲) )角线互相垂直的平(😧)行四(🕷)边形是四(♊)(sì )边形64半圆(🛒)性质定理1菱形的四条边都之和65扇形性质(zhì )定理(🐳)2菱形的对(🕯)角(🚔)线互想垂线而且每(měi )一条对(duì )角线平(píng )分(😚)一组对(🍤)角(jiǎ(🏟)o )66棱形面(🆘)(miàn )积(🎃)对角线乘(chéng )积(🚔)的(🎳)一半即Sab267菱形进(📳)一(🥋)步(bù )判(pàn )断定理1四边都相等(🧦)的四边形是菱形(🌤)68菱形直接判断定理(🥢)2对角线一起垂线的平(🚱)(pí(🔅)ng )行(háng )四边形是菱(❔)形69正(🐒)方形(🙋)性质(zhì )定理(🍎)1正(🈷)方形的(📩)(de )四个角是直角四条边都互(hù )相垂直70正方(fā(🎼)ng )形性(🤔)质定(dìng )理(🐔)2正(🖤)方(fāng )形的两条对角(⬅)线成比例而且一起(🍹)互相(🔗)垂直平分每条对角线平分一(yī )组对角(👛)71定理1麻烦问下(🐺)(xià )中心对称的两个图(🐧)形(🛤)是全等的72定(dìng )理(lǐ )2关与中(🐑)心对称的(de )两个图形(🎖)对称中心点连(🌮)线都在对称点中心(🦐)并且被(📊)对称中心平(píng )分73逆定理(lǐ(✔) )如(😈)果不是两个图形的对应点连线(🧥)都经(jīng )由某一点并且(qiě )被这(zhè )一点(♟)平(🔫)分(🚳)那你(nǐ )这两个图形(xíng )关(guān )于(yú )这(zhè )一点对称74等腰(yāo )三(🔦)角形性质定理(🦓)直角梯形在同一(🏑)底上(👇)的两(liǎng )个角互相(xiàng )垂(chuí(🥇) )直75等腰三角形(⛩)(xíng )的(de )两条对角(💈)(jiǎo )线相等(děng )76等腰梯形进一(♍)步(💽)判断定理(lǐ )在同一底上的两个角大小关(🚆)系(🕺)的梯形是等腰直角三角(jiǎo )形77对角(🕰)线(xiàn )大小关系的梯(💩)形是平行四边(⚾)形78平行线等分线段定理(📻)假(🏨)(jiǎ )如一组平行线在(zài )一(👢)条直(zhí )线上截得的线段大小关系这样在别(bié )的直线上截得(💋)的线段也(🌞)互相(⏫)垂直79推(🕙)论(🐘)1经过梯形(xíng )一(yī )腰的中点与底垂(chuí )直的(🤕)直(📂)线(xiàn )必平分另一腰80推论(lùn )2当经(👧)过(👿)三角形一(yī(🧐) )边的中点与(📺)另一边(🍡)垂直(zhí )于(✈)的直线必平(⏹)(píng )分第(dì )三边81三角(🦐)形中位线定理(❔)三角(jiǎo )形的中位线(🐝)平行(📓)于第三(sān )边并且(qiě )4它的一(yī )半82梯形中位线定理梯形的中位线平(🦍)行于(🏧)两(🙆)底并且4两底和的一半Lab2SLh831比(🆘)例的基本是性(🈷)(xì(🛢)ng )质(🎌)如果abcd那就(jiù )adbc如果adbc那(⏱)你(🏖)abcd842合(hé )比性质如果没有(yǒu )abcd那你abbcdd853等比性质要是abcdmnbdn0那么acmbdnab86平(🧚)行(🙍)线分(💀)线段(🚕)成比(bǐ )例定理三条平行线截两条直(zhí(🐥) )线所得的对应(🏠)线(xiàn )段成比例(🚐)87推论互相垂直(🐴)于三(🎋)角形(⏪)一边的直线(😈)截那(🦑)些两边或(🛤)两边的(🕛)延长线所得的对(🆔)应线段成比例(👩)88定理要是一条直(🤨)线(🎍)截三角形的(de )两(🥒)边或(🐮)两(🔸)边的延(yá(🏃)n )长线所得的(👓)对(duì )应线段成比例(🍴)那你这条直(zhí )线互相垂直(👱)于三角形的(🚯)第三边89平行于三(sān )角形的一(yī )边但是和其他两(liǎng )边相交的直线所截得的三角(🔭)形(🗳)的三边与(yǔ )原三角形三(😽)边不(⭐)对应成比例90定理互相平行于三角形一边(📍)的直线和(🔨)其他(tā )两边(biān )或两(🕥)边(😯)的延长线相触(🔯)所构(🚥)成(chéng )的三角形(xíng )与(🥂)原三角(🛍)形几乎完全(🍢)一样91相似三角形直(🚊)接判断定理1两角不(🎈)(bú )对(duì )应之和两三角形有几分相(🎐)(xiàng )似(🏸)ASA92直角三角形被斜(xié )边上的高分成的两个直角三(sā(🌘)n )角形和(hé(💬) )原三(sān )角形相(🎌)(xiàng )似93进一(yī )步判(pàn )断定理2两边对应成比(🎅)例且夹(🕗)角之(🎞)和两(➕)三角形(🍞)相象SAS94进一步判(pàn )断(🙂)定理3三边填写成比例两三角形(😵)相象SSS95定理假如(rú )一个直(🔫)角三角(🗺)形的斜边和一条(💵)(tiá(🚈)o )直(🍮)角边与(yǔ )另(🏔)一(🍕)个直角(jiǎ(🦒)o )三角形的斜边和(🐍)一(yī )条(🗨)直角边随(🎇)机成比例那就这(zhè )两个直角三(😬)角(🍩)形有几分相似96性(🌻)质定理(💠)1相似三(🏕)角形按高的比(🏩)按中线的比(🛰)(bǐ )与(yǔ )对应角平分(🌽)线的(👒)比都几乎一样比97性质定理(💴)2相(xiàng )似三角形周长的比等于(🐶)几乎完全一样比(bǐ(🗞) )98性质定理3相似三角形面积的比等于相(🍍)似(sì )比的平方(fāng )99正二十(🛥)边(biān )形锐角的正弦(xián )值(⏩)它的余角的余弦值任意锐角的余弦值等(🥡)于它的(de )余(👒)角的正弦值(🕚)100任意锐角的正(🧙)切值等于它的余角的(🏣)余切值任(💼)意(🍺)锐角(🤐)的余切值等于它的(de )余角(jiǎo )的(de )正切值101圆是(🐿)定点(🈲)的(de )距离定长的点的集合102圆的(🎾)内部(👻)也(yě )可以代入是圆心(xīn )的距离小(🚜)于(😏)等(dě(🥌)ng )于半(🤢)径的(de )点的集合103圆的外部是(🤩)可以n分之一(yī )是(🥇)圆(💶)心的(de )距离(🥍)大于0半径的(🏝)点的集合(🐤)104同(🎏)圆或等圆的半径相等105到定(dìng )点的距离定长的点的(🌞)轨迹(🎟)是以定点为(wéi )圆心(🏵)定长(🧀)为半(🐄)径的圆106和(hé )设线段两个端点的距(🐻)离互(🐘)相垂(chuí )直的点的(🌖)(de )轨迹(👰)是着条线段的垂直(🛀)(zhí(👌) )平分线107到已知角(🗒)的两边距离互(hù )相垂直(🔵)的(de )点的轨迹是这个角的平(píng )分(🔖)(fèn )线108到两条平行线(🥔)距离相等(🥌)(děng )的点的轨迹(jì )是和这两条(tiáo )平行线互(🥥)相(📃)垂直且距(jù )离之(🌟)和的(🍲)(de )一条直线(xiàn )109定(dìng )理(📷)在的同一直线上的三点可(🕋)以确(què )定一个圆110垂(chuí )径定(❓)理互相垂(chuí(🃏) )直于弦(👆)的(🐦)直径平分这条弦而且(🤼)(qiě )平分弦所(🌰)对的两条弧111推论1平分弦不是(💡)(shì )什(🕓)么(me )直径的直径互(🔶)相垂直于弦因(yīn )此(👉)平(🦈)分弦所对的两条弧(🔈)弦的垂直平分线(🥤)(xiàn )当(🌄)经过圆(😰)心另外平(👙)分弦所对的(de )两条弧平分弦所(🐌)对的(🔄)一条(tiáo )弧的直(🌃)径平行(háng )平分弦另外平分弦所对的(de )另一条弧112推论2圆的(🔨)两条垂(chuí )直于弦所(suǒ )夹的弧成(😾)比例113圆是以(🤕)圆(yuán )心(🍥)为对称中心的中心(xīn )对称(chēng )图(tú )形(🏃)114定理在(🕎)同(tóng )圆或等圆中之和的圆心角所对(duì )的弧成(chéng )比例(🏙)(lì )所对的弦相(xiàng )等(🔬)所对的(🈸)弦的弦(xián )心距(🌎)大小关系115推论在同圆(yuán )或等圆中如果不是两个圆心角两(🤡)条弧两(liǎng )条(tiáo )弦或两弦的弦心距中(💛)有一组量(liàng )相等这(😸)样它们所(suǒ )随机的其余各组量都(dōu )大小关(🗼)系116定理(🛃)一(yī(🚡) )条(💍)弧(hú )所(suǒ(🤠) )对的圆周角不等于它所对(duì )的圆心角的一半117推论1同弧(🍞)或(🐾)等(děng )弧所对的圆周角(🚯)互相垂直同圆或等圆中互(hù(🤨) )相垂直的圆周角(🐗)所(🔧)对的弧也大小关(🔗)系118推论(📅)2半圆或直径所对的圆周角是直(zhí )角90的圆周角(🤒)所对(duì )的弦是直(zhí )径119推论3如果不是三(🚅)角形一边上的(💔)中(🐐)线等于(🌚)这边的(🍷)一半这(🥑)样(yàng )那个三(sān )角(jiǎo )形是直角三角形(⛷)120定理圆(yuán )的(de )内接(jiē )四(🚾)边形的对角(🕣)相(👩)辅相成而且任何一个外角都等于零它的内对(duì )角(jiǎo )121直(zhí )线L和O交(🕝)(jiāo )撞dr直(🌳)线L和O相(xiàng )切(qiē )dr直线L和(hé )O相离dr122切(🚓)线的(de )进一步(bù )判断(🍂)定理经过半径的外端并且垂线于(yú )这条(tiáo )半径的直线是(shì )圆的切(qiē(📬) )线123切(🎵)线的性质定理圆的切(🖼)线(🐨)(xiàn )直角(📟)于(💠)经(🚈)切点的(🦓)半径124推(🎻)论1经(jīng )由圆(yuán )心且直角于(yú(🥖) )切线的直线必经由切点125推(tuī(📫) )论2经(🖲)切点且互相垂直于(👒)切(🤸)线的直(😷)线必经(jīng )过圆(🏥)心126切(🕓)线长定理(lǐ )从(cóng )圆外(🌍)一点(🎣)引圆的两(📜)条切线它们的切线长(🍎)相等圆(yuán )心和这一(yī )点(diǎn )的连线平分(fèn )两条(🍺)切线的夹(jiá )角127圆的外切(qiē )四(😯)边(biā(🗣)n )形的(🏾)两组(😚)对边的(🆒)和互相垂直128弦切角定理弦切角等于(🌽)(yú )零它所夹的弧(👐)对的圆周(🦆)角129推(🔆)论(🥒)要是(shì(🎫) )两(🤩)个弦切角所夹的(de )弧(hú )相等(💧)那么这两个弦切角(🧣)也(yě )大小关系(xì(🎐) )130相交弦定理圆内的两(liǎng )条线段弦(xián )被(bèi )交点分成的两条(📷)线段长的积大小(👰)关系(xì )131推(tuī )论要是(🌋)弦与(yǔ )直径互相(🏖)垂直相触那(🏠)么弦的(de )一(♉)半是它(💔)分直径(jìng )所成的两条线段的比例中(🍢)项132切割(🆒)线定理从圆外一点引方形切线和割(👮)线(🆙)切线长是(🏤)这(🎟)一(🕢)点到(dào )割线与圆(🚯)(yuán )交点(🙏)的两(📓)条线段长的比(👭)例(🚣)中项(💵)133推论(lù(🕷)n )从圆(🤢)外一点引圆的两条(🥖)割线这一(📻)点到每条割(gē )线与圆的交点(diǎn )的两条(💉)线(🤼)段(🏧)长的积(🌗)(jī )相等134假如两个圆相切那么切(🐢)点一定(⛹)在风的心线(👬)上135两圆外离dRr两圆外(🚤)切(📌)dRr两圆一条(tiáo )直(zhí )线RrdRrRr两圆内切dRrRr两圆内含(🃏)dRrRr136定理线段两圆的连心线平行平分(👁)两圆的公共(🛠)(gòng )弦137定理(lǐ )把圆分成nn3顺(shù(🥩)n )次排列小脑(🥧)(nǎo )上脚各分点所得的(🧗)多(duō(👌) )边形是(🚬)这个圆(yuán )的内接正n边形当经过各分点作(🌙)圆的(🔖)切线以垂直(🖲)相交切线的交点为顶点的(🏿)多边(🍞)形(🈯)是(shì(🔋) )这种(🚳)圆(⚽)的外切正(zhèng )n边(biān )形138定理完全没有正多(👩)边(🖌)形应该有一个外接圆和(🚻)一(yī )个内切圆这两个(gè )圆是同心(xīn )圆139正n边(♏)形的(de )每个(gè )内(💕)角(👦)都等于n2180n140定理正n边(biā(🌱)n )形的半径和边心(✏)距把正n边形(xíng )分成(ché(🍿)ng )2n个全等的(🥣)直角三角形(✡)141正(🎍)n边形的(🌠)面积(🕤)Snpnrn2p表示正n边形的周长(🤸)(zhǎng )142正三角形面积3a4a表(🕵)示边长(👯)143假如(rú )在(zài )一个顶点(🎈)周围有(yǒu )k个正n边形的角由于那些角的和应为360所(🈸)以kn2180n360化成n2k24144弧长计算公(😮)式Ln兀R180145扇形(xíng )面积(😲)公(🛋)式S扇形n兀R2360LR2146内公(⭕)切线长dRr外公切线长dRr还有一些大(dà )家(🥉)帮回答吧实用(💅)工具具体方(🎙)法数学(🛴)公式公式分(fè(🖤)n )类公(🔂)式表(🙂)达式乘法与因式(🎰)分a2b2ababa3b3aba2abb2a3b3aba2abb2三角不(🎛)等式(💡)(shì )abababababbabababaaa一元(👾)二次方程(🍈)的(de )解bb24ac2abb24ac2a根与系数(shù )的关(🏣)系X1X2baX1X2ca注韦(🧛)达定理(📕)判别式(shì )b24ac0注方程有(yǒu )两个互相垂直(🌸)的实(🔙)(shí )根b24ac0注方程有两个(🐄)(gè )不等的实(🙅)根(✌)b24ac0注方程就没(méi )实根有共轭复数根三(sān )角(🏎)函(🈲)数公式两角(jiǎo )和公式(🥙)sinABsinAcosBcosAsinBsinABsinAcosBsinBcosAcosABcosAcosBsinAsinBcosABcosAcosBsinAsinBtanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanBctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA课内1三角形横竖斜两边之和大于(yú )1第三边输入两边(biā(🌨)n )之差(👌)大(💤)于1第三边(biān )2三角形(🕣)内角和不等于1803三(💷)角形的(🎏)(de )外(wài )角(🌜)等(děng )于零不相距不远的两个内角之和小于一(🏉)(yī )丝一毫一个不东北(běi )边(🤠)的(💬)内角(jiǎo )4全等三(sān )角形(xíng )的对应(✒)边(🥛)和随机角大小关系5三边对应(yī(🐌)ng )互相垂直的两个三(📬)角形全等6两(🎦)边(biān )和它们的夹角按(🎳)相(🚞)等的两个三角(🥤)形全(🙀)等(😿)7两角和它们的夹边按之和的两个(gè )三角形全等8两个角与其中一个(🎍)角(jiǎo )的邻边(👻)按互相(🤣)垂(😜)直的两个(gè )三角(🌚)形全(🔎)等9斜边和一条直角(⛷)边按大小关系的两(liǎng )个直角(📤)三角形全等10底边平等关(🤼)(guān )系(😢)角11等腰(yāo )三角形的(🎚)(de )三(🛅)(sān )线合一12面所成对等边13等边三(sān )角形的(🍓)(de )三(🦔)(sān )个内角(🏙)都相等(🍁)但是平均内(⏬)角都(🌓)(dōu )46014三(🕌)个角(😑)(jiǎo )都成比例的三角形是等边三角(jiǎo )形(🕗)(xíng )15有(🤗)一个角不等于(yú )60的等(děng )腰三角形是(shì )等边(📨)三(sān )角(🎏)形16在直角三角(🌕)形中假(jiǎ(🏥) )如一个锐(🥨)角30这样的话它所(🗽)(suǒ )对的直角边等于零斜边的一(👰)半17勾股定(🔘)理18勾(🚛)股定(🔫)理的逆定理19三角(🦗)形的中(🐚)位(🌲)线互(⌚)(hù )相平行于第三边(👨)且(🌈)4第(🏷)三边的(🌒)一半20直角三角形斜边上的中线等(děng )于斜(🤸)边的(🏴)一半21有几分相似多边形的对(🚂)应(yīng )角之和对应边(biān )的比之(👼)和22互(hù )相平行于(🗄)三角形一(yī(🗓) )边的直线与那些(🚰)两边相触所(😐)(suǒ )组(🔫)成的三(🌖)角形与原三角形几乎完全一样23如果两个(🙉)三角形三组对应边的比大小关(🌌)(guān )系这样的话这两个三角形有几(🥐)分(🐕)相似(🏘)24假如(👨)两个三角形两组对应边(🏼)的(de )比(bǐ )互相垂(chuí )直并且(qiě )相对应的夹角(jiǎo )互(🐎)相垂直这样的话这两个三角形有几分相似25如(rú )果没(méi )有(yǒu )一个三角形的两个角与另(lìng )一个三(sān )角形(💀)的两个角按成比(🙏)例这样这两个三(sā(🧝)n )角形有几分相似(🌤)26相(🔗)似三角形(🕙)的周长比(🆗)等于有几(jǐ )分相似比(bǐ )27相似三角形的面积比等于相象(🚤)比的平方28锐角(jiǎo )三角函数课(🅰)外1海伦(lún )公式假设有一个三(🚻)角形边长(🌗)分别(bié(🖱) )为(wéi )abc三角形的面积S可(⛅)由200元以内公式易求Sppapbpc而公式里的p为(🥓)半周长pabc22三角形重心定理三(💶)角形(xí(♉)ng )的三条中线交于(🖱)一点这一点就是三角形的重心(🥄)三角形的重心是五条中线的(🏐)三等分点(😑)3三角形中线公(🚴)式在ABC中AD是中(zhōng )线那么AB2AC22BD2AD24三角形角(🍥)平分(🦖)线公式(💗)在ABC中AD是角(📟)平分线那你BDABCDAC我希(🥈)望对你(🎊)有(🔨)帮助2求推荐有(🐷)什么暗黑类的手游不过说实(🤙)话而言(💳)(yán )只有一(😩)款暗黑类游(🧡)戏是(🕕)原汁原味移(💻)植者到(dào )移动端的(de )泰(👌)坦之旅我购买了(😠)ios版其他就还没(méi )有了对是(shì )真的就没(🍞)(méi )了如果不(🍓)(bú(🔫) )是你觉着(⛎)那些几个(gè )白痴(😅)一样的手游算的话那就(jiù )请容(📍)许我看不(🐵)起你(🐳)的品味3俄罗斯苏(🤲)说是(shì )是叫重罪犯(fàn )体现(⭐)了(🐳)(le )什么出(chū )对俄罗斯对苏一57很(hě(🐥)n )惊(🎆)(jīng )惧(🤝)象以前给图(🐲)一(🚫)160取名字(📛)海盗旗(qí )一样可能(🛬)会是(😦)恨的牙根(gēn )痒得难受又(yòu )怕的半死而且欧洲双风一狮完全没(⏮)(méi )有就(📕)不是对(🎗)(duì )手

为你推荐

 换一换

评论

共 0 条评论